Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(7): 1656-1674, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36763810

RESUMO

Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.

2.
J Am Soc Mass Spectrom ; 33(12): 2199, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475381
3.
Anal Chim Acta ; 1233: 340490, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283780

RESUMO

Glucuronidation is a common phase II metabolic process for drugs and xenobiotics which increases their solubility for excretion. Acyl glucuronides (glucuronides of carboxylic acids) present concerns as they have been implicated in gastrointestinal toxicity and hepatic failure. Despite the substantial success in the bulk analysis of these species, previous attempts using traditional mass spectrometry imaging (MSI) techniques have completely or partially failed and therefore little is known about their localization in tissues. Herein, we use nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI), an ambient liquid extraction-based ionization technique, as a viable alternative to other MSI techniques to examine the localization of diclofenac, a widely used nonsteroidal anti-inflammatory drug, and its metabolites in mouse kidney and liver tissues. MSI data acquired over a broad m/z range showed low signals of the drug and its metabolites resulting from the low ionization efficiency and substantial signal suppression on the tissue. Significant improvements in the signal-to-noise were obtained using selected ion monitoring (SIM) with m/z windows centered around the low-abundance ions of interest. Using nano-DESI MSI in SIM mode, we observed that diclofenac acyl glucuronide and hydroxydiclofenac are localized to the inner medulla and cortex of the kidney, respectively, which is consistent with the previously reported localization of enzymes that process diclofenac into its respective metabolites. In contrast, a uniform distribution of diclofenac and its metabolites was observed in the liver tissue. Concentration ratios of diclofenac and hydroxydiclofenac calculated from nano-DESI MSI data are generally in agreement to those obtained using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Collectively, our results demonstrate that nano-DESI MSI can be successfully used to image diclofenac and its primary metabolites and derive relative quantitative data from different tissue regions. Our approach will enable a better understanding of metabolic processes associated with diclofenac and other drugs that are difficult to analyze using commercially available MSI platforms.


Assuntos
Diclofenaco , Espectrometria de Massas por Ionização por Electrospray , Animais , Camundongos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Íons , Anti-Inflamatórios
4.
Annu Rev Phys Chem ; 72: 307-329, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33441032

RESUMO

Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications.


Assuntos
Espectrometria de Massas/métodos , Animais , Encéfalo/diagnóstico por imagem , Química Encefálica , Humanos , Rim/química , Rim/diagnóstico por imagem , Fígado/química , Fígado/diagnóstico por imagem , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
5.
J Am Soc Mass Spectrom ; 31(12): 2437-2442, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32841564

RESUMO

Mass spectrometry imaging (MSI) is a powerful technique for the label-free spatially resolved analysis of biological tissues. Coupling ion mobility (IM) separation with MSI allows for separation of isobars in the mobility dimension and increases confidence of peak assignments. Recently, imaging experiments have been implemented on several commercially available and custom-designed ion mobility instruments, making IM-MSI experiments more broadly accessible to the MS community. However, the absence of open access data analysis software for IM-MSI systems presents a bottleneck. Herein, we present an imaging workflow to visualize IM-MSI data produced on the Agilent 6560 ion mobility quadrupole time-of-flight system. Specifically, we have developed a Python script, the ion mobility-mass spectrometry image creation script (IM-MSIC), which interfaces Agilent's Mass Hunter Mass Profiler software with the MacCoss lab's Skyline software and generates drift time and mass-to-charge-selected ion images. In the workflow, Mass Profiler is used for an untargeted feature detection. The IM-MSIC script mediates user input of data, extracts ion chronograms utilizing Skyline's command-line interface, and then proceeds toward ion image generation within a single user interface. Ion image postprocessing is subsequently performed using different tools implemented in accompanying scripts. Though the current work only showcases Agilent IM-MSI data, this workflow can be readily adapted for use with most major instrument vendors.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Software , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...